Abstracts

Magnetization and Colossal Magnetoresistance Effect of La$_{1-x}$Bi$_x$MnO$_3$ Systems

by

Takashi Ogawa*, Hiromasa Takeuchi*, Tsuyoshi Okamoto* and Yoshiharu Koizumi*

(Received on Mar. 31, 2004 & accepted on Jun. 29, 2004)

Abstract

Perovskite-type La$_{1-x}$Bi$_x$MnO$_3$ (LBMO) crystals, which are prepared by the substitution of Bi atom with La atom from a performed LaMnO$_3$ crystal, have been clarified to have the colossal magnetoresistance (CMR) effect. These samples were produced using a sintering process in an atmosphere as a function of Bi composition ratio x. It was found that the Jahn-Teller distortion exists on LBMO crystal structures of orthorhombic (or rhombohedral) type with lattice parameter γ (~c/a)~1.02 in 0<x<0.3, pseudo cubic type with γ=1.005 in 0.3<x<0.5, and tetragonal type with γ=1.014 in a ratio more than 0.5<x, from X-ray diffraction measurements. The CMR effect of LBMO for x=0.2 was approximately 400% at 88K. On the basis of result, it was defined that the occurrence mechanisms of CMR for LBMO significantly contribute Mn$^{++}$-Mn$^{++}$ double exchange interaction which is closely associated with the cooperative phenomena in Jahn-Teller distortion.

Keywords: Perovskite type, Jahn-Teller effect, Colossal magnetoresistance (CMR), Mn magnetic moment, XPS

* 1 Graduate Student, Course of Applied Science
* 2 Professor, Department of Material Science
* 3 Associate Professor, Department of Applied Science, Course
 Course of Energy Engineering
* 4 Professor, Department of Electronics, School of Information
 Technology Electronics

Failure Pattern of Concrete Cylindrical Shells Reinforced with Complex Carbon Fiber under Impact Load

by

Kenjiro KAWASAKI*, Kazuhiko MASHITA*, Shinichiro YAMAGUCHI* and Yuri ITO*

(Received on Feb. 25, 2004 & accepted on May 26, 2004)

Abstract

The main purpose of this study is to investigate, both experimentally and numerically, the mechanical behaviors of concrete circular cylindrical shells reinforced with complex carbon fiber under impact point load. Complex carbon fiber reinforcement is defined in this study as combined reinforcement with carbon fiber sheets attached to the outer shell surface and with carbon fiber chips mixed into the inner shell body. Combined reinforcement could be expected to improve the quality of the shells, that is, the homogeneity and isotropy of the concrete shells with carbon fiber chips as compared to those with standard steel bars could be improved, while the mechanical behavior despite large thickness variances could be improved by carbon fiber sheets. A failure experimental study was conducted on two different types of reinforcement on small-scaled shell specimens attached to carbon fiber sheets. One type was made of a concrete shell reinforced with carbon fiber chips and the other type was made of a concrete reinforced shell with ordinary steel bars. Each model was applied with impact load up to failure states. As for numerical analysis, numerical calculations were carried out by a nonlinear transient dynamic finite element method. The effects of complex carbon fiber on the dynamic behaviors of concrete shells were discussed on the basis of the experimental and numerical results.

Keywords: Concrete Shell, Impact Load, Complex Carbon Fiber

*1 Graduate Student, Course of Architecture and Building Engineering
*2 Professor, Department of Architecture and Building Engineering
*3 Engineer, Toda Corporation
*4 Graduate Student, Course of Architecture and Building Engineering