Magnetization and Colossal Magnetoresistance Effect of La_{1-X}Bi_XMnO₃ Systems by Takashi Ogawa*1, Hiromasa Takeuchi*2, Tsuyoshi Okamoto*3 and Yoshiharu Koizumi*4 (Received on Mar. 31, 2004 & accepted on Jun. 29, 2004) ## Abstract Perovskite-type La_{1-x}Bi_xMnO₃ (LBMO) crystals, which are prepared by the substitution of Bi atom with La atom from a performed LaMnO₃ crystal, have been clarified to have the colossal magnetoresistance (CMR) effect. These samples were produced using a sintering process in an atmosphere as a function of Bi composition ratio x. It was found that the Jahn-Teller distortion exists on LBMO crystal structures of orthorhombic (or rhombohedral) type with lattice parameter γ (=c/a)=1.02 in 0<x<0.3, pseudo cubic type with γ =1.005 in 0.3<x<0.5, and tetragonal type with γ =1.014 in a ratio more than 0.5<x, from X-ray diffraction measurements. The CMR effect of LBMO for x=0.2 was approximately 400% at 88K. On the basis of result, it was defined that the occurrence mechanics of CMR for LBMO significantly contribute Mn³⁺-Mn⁴⁺ double exchange interaction which is closely associated with the cooperative phenomena in Jahn-Teller distortion. Keywords: Perovskite type, Jahn-Teller effect, Colossal magnetoresistance (CMR), Mn magnetic moment, XPS ^{*1} Graduate Student, Course of Applied Science ^{*2} Professor, Department of Material Science ^{*3} Associate Professor, Department of Applied Science, Course Course of Energy Engineering ^{* 4} Professor, Department of Electronics, School of Information Technology Electronics