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Abstract
We have proposed a magnetic levitation control system for a sheet steel and confirmed the realization by digital control
experiment. However, because of the strong nonlinearlity of the attractive force of an electromagnet and various uncertainties
in circuit current such as changes in resistance due to the heat generation of the electromagnet, the stability of levitation is not
As one of the effective control methods for solving this problem, sliding mode control, which enables
easy handling of nonlinear models, is attracting attention, and an attempt to use this sliding mode control in electromagnetic

sufficiently ensured.

bearing control has been reported. In this study, we aim to develop a noncontact support system for thin steel plates with high
robustness using sliding mode control, which is tolerant to factors such as disturbance with respect to control signals and the
external force of the system. We applied a 1-degree-of-freedom model and a continuous model for the modeling of sheet steel.
Then, experiments were carried out under several conditions, and the obtained results were compared with the optimal control
results. As a result, it was verified that the suppressive effect of the sliding mode control on disturbance is sufficient and the
application of the continuous model enables the construction of a system with robustness to the disturbance of the external
force.

Keywords: Steel Plate, Electromagnetic Levitation, Disturbance, Elastic Vibration, Continuous Model, Optimal Control,

Sliding Mode Control

1. Introduction

Thin steel plates are widely used as materials for automobiles,
electric appliances, cans and other products in current industries.
The surface quality required for thin steel plates is becoming higher
due to various demands on the thin steel plates. However, because
contact conveyance using a roller is mainly adopted in the
conveyance process of a thin-steel-plate production line, the problem
of surface quality deterioration arises. In recent years, as a
countermeasure for this problem, research on the noncontact
the =~ application of electromagnetic

conveyance system with

levitation technology has been active ”®. To date, our research
group has constructed an electromagnetic levitation control system
with which the relative distance between an electromagnet and a
steel plate is maintained at a constant value, aiming to prevent the
steel plate from falling from the conveyer or coming into contact
with the electromagnet during electromagnetic levitation conveyance
@ However, because of the strong nonlineality of the attractive
force of the electromagnet and the various uncertainties in the circuit
current such as changes in the resistance due to heat generation of

the electromagnet, the stability of levitation is not sufficiently

nonlinear models, is attracting attention, and an attempt to use this
sliding mode control in electromagnetic bearing control has been
reported™® . Sliding mode control is highly robust, due to which
any disturbance satisfying the matching condition, i.e., disturbance
and modeling errors existing in the same channel as the control input,
can theoretically be completely removed ”. Accordingly, when
sliding mode control is applied to electromagnetic levitation control
of thin steel plates, it is expected not only to show excellent control
performance against the deterioration of the levitational effect due to
the nonlinearlity of the electromagnetic attractive force, but also to
ensure robustness against various uncertainties in the circuit current
which cannot be eliminated by applying a general linear control
theory, thereby enabling the construction of more stable control
systems. Under such circumstances, in this study, we simulated
uncertainties included in the circuit current by forcibly inputting
disturbance into control signals of an electromagnet used for the
levitation of thin steel plates, and investigated the effect of sliding
mode control in suppressing such disturbances.

Another major problem in electromagnetic levitation control of
thin steel plates is the lack of levitation stability due to elastic

vibration of the thin steel plate, which is a flexible body. Assuming

ensured. As one of the effective control methods for solving this an actual electromagnetic levitation conveyance process, we can
problem, sliding mode control, which enables easy handling of consider a case in which a thin steel plate undergoes elastic vibration
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supporting clectromagnets. However, no attempt at controlling the
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artificially produced elastic vibration in a thin steel plate during its
levitation has been reported. Therefore, we installed an
electromagnet to produce disturbance in an experimental apparatus,
and artificially applied an external force to the thin steel plate during
levitation by electromagnetic attractive force, and investigated the
effect of suppressing the elastic vibration. We also performed a
comprehensive investigation wherein these disturbances were
applied simultaneously, assuming an actual industrial process.

To model a thin steel plate, we used a continuous model
considering the vibration mode, and a I-degree-of-freedom (1DOF)
model with which a control system can be easily designed. Then,
discussion is made from the viewpoint of a performance evaluation
of the sliding mode applied to these two models. In this study, we
designed a control system using discrete-time sliding mode control
® with which the spillover of higher order electric vibration modes,
that had previously been neglected, is controlled by the suppression
of chattering. In addition, an optimal control was also adopted to
compare the control performance, and experiments were performed

for various cases.
2. System for control experiment

Figure 1 shows an outline of the control system and experimental
apparatus . The object of electromagnetic levitation is a
rectangular zinc-coated steel plate (SS400) with length @ = 800 mm,
width & = 600 mm, and thickness # = 0.3 mm. To accomplish
noncontact support of a rectangular thin steel plate using 5 pairs of
electromagnets (Nos. 1-5) as if the plate was hoisted by strings, the
displacement of the steel plate is measured using five eddy-current
gap sensors.  Here, the electric circuits of paired electromagnets are
connected in series, while an eddy-current gap sensor is positioned
between the two magnets of each pair. The detected displacement
is converted to velocity using digital differentiation. In addition,
the current in the coil of the electromagnets is calculated from the
measured external resistance, and a total of 15 measured values are
input into the digital signal processor (DSP) via an A/D converter to
calculate the control law. A control voltage is output from the D/A
converter into a current-supply amplifier to control the attractive
force of the 5 pairs of electromagnets in order that the steel plate is

levitated below the surface of the electromagnets by 5 mm. In this
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Fig.1 Electromagnetic levitation control system.
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Fig.2 Experimental apparatus.

study, for the basic examinations, the steel plate was reinforced by
three pipes in order to suppress the elastic vibrations in the y-axis
direction. The dotted lines in the steel plate shown in Fig. | are the
pipes made of light carbon fiber. The total weight of the carbon
pipes is about 6% of the steel plate mass. It was confirmed that the
influence of attaching a pipe to the steel is negligible when
low-order modes, such as first- and second-order modes, are
considered. In addition, as shown in Fig. 2, two electromagnets for
the generation of disturbance are placed at the antinode position of
the Ist elastic mode vibration, so that the two electromagnets

sandwich the steel plate from top and bottom sides.

3. Modeling of steel plate
3.1 IDOF model

In a 1DOF model, independent control is carried out, in which
information on detected values of displacement, velocity and coil
current of the electromagnet under study at one position are
feedback only to the same electromagnet.  Therefore, as shown in
Fig. 3, the steel plate is divided into 5 hypothetical masses and each
part is modeled as a lumped constant system.

When a steel plate is supported by the static electrostatic
attractive force of an electromagnet, an equilibrium state exists in
which the steel plate is levitated at a constant height. Designating
the displacement of the steel plate in the vertical direction of this
state as z, (n corresponds to the numbers 1-5 in Fig. 1), the equation

of motion is given as follows.
m,z, = 2f, (M
Where my,. mass of the steel plate into five [kg], z,: vertical

displacement [m], and f;,: dynamic magnetic force [N].

Eddy current type I
gap sensor

n‘ Ill

Electromagnet
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(rigid body)

Fig.3 Theoretical model of levitation control of the steel plate.
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If deviation around the static equilibrium state is very small, the

characteristic equations of the electromagnet are linearized as

F, F,
=l 2
f;ll ZO " [ n ( )

n

p=e s e ey 3)

4

where F,: magnetic force of the coupled magnets in the equilibrium
state [N], Z,: gap between the steel plate and electromagnet in the
equilibrium state [m], /, : current of the coupled magnets in the
equilibrium state [A], i,; dynamic current of the coupled magnets
[A], L.: inductance of one magnet coil in the equilibrium state [H],
R:: resistance of the coupled magnet coils [Q], v.: dynamic voltage
of the coupled magnets [V], L.,/Zo: effective inductance of the one
magnet coil [H], and L. leakage inductance of the one magnet coil
[H].
3.2 Continuous model

Continuous model which expresses the motion of the steel plate
by means of equations in which the original elastic vibrations of the
plate is considered. At an equilibrium levitation state, magnetic
forces are determined so as to balance with an elastic force and
gravity. The equation of small vertical motion around the
equilibrium state of the steel plate subjected to magnetic forces is
expressed as follows.

Lk Ch® o
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Where o density [kg/m®], & : thickness [m], C: internal damping
coefficient [Ns/m2], D: ER*/12(1-v*) [Nm], v: Poisson ratio, £ :
Young's modulus [N/m?], f..(¢): dynamic magnetic force at the n-th
coupled magnets [N], «: time [s], z(x,y): vertical displacement [m], x,
y, z. coordinate axes indicated in Fig.1[m], Xoin, Xazns Yatn, Yazn:
location of the n-th coupled magnets (n=1,2,3,4,5) [m], J(): Dirac
delta function [I/m], w(¢): dynamic magnetic force at the disturbance
[N1, Xam, Yam: position of the electromagnets for disturbance [m].

The characteristic equations of the electromagnets can be derived
in much the same as 1 DOF model, that is

Lo = ;— 2(x,,, p.)+ f— i, ©6)

0 n
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where X, Vs :position of the n-th sensor[m].

4. State equation
4.1 State equation for 1DOF model
Using the state vector, the equations (1) ~ (4) are written as the

following state equations:

z,, =A,z, +B,v, (®

. . T
zln = [Z/n Z/n lln]

0 1 0
2F 2F
Au=|=22= 0 :
mzZU mzlu
0 by 1, R,
L L, Z: 2L
r T
1
B, =10 0
L 2L,

4.2 State equation for continuous model

The vertical displacement of the plate can be expanded to an
infinite series of a space-dependent eigenfunction ¢ ,(x,y) as shown
in Fig.4 multiplied by the time-dependent normal coordinate. The
eigenfunctions of the plate are assumed to be products of the elastic
beam eigenfunctions of the x- and y-coordinates. The function of
x-coordinate X, (x)(mm=l,2,...) satisfies the free-free boundary
condition, and the function of the y-coordinate is expressed in rigid
modes(parallel and rotational motions) Y,(y),Y2(y) only. In addition,
since the number of sensors used in this experiment is 5, we selected
M =5 for the control in which consideration is given to the 5th mode
(Ist elastic mode). The mode-expansion equations are given as

follows.
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Fig.4 Mode shape of the magnetically levitated steel plate for the

continuous model.
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Where a: length of the plate, b: width of the plate.

State variables of the system are normal coordinates of vertical
displacement of the plate £ 4, The control input of the system is the
dynamic voltages of the magnets v.. Output variables of the system
are vertical displacements z.. Using the state, control and output
vectors, the forgoing eqs. (5)~(7) are written as following state and

output equations:

&y = A;\/ &t B;\/ v.+ G;:u w (10)

2, =C,¢, (11

é,\/=[§1”';u "51"‘5}\/ il"'is]T

here, details of matrices 4 ;m, B;m, C;m and G are omitted due

to space limitations.

5. Control theory
5.1 Optimal control in the discrete time system
In this study, a control system is constructed using a discrete time
system; therefore, the evaluation function of a continuous system is
digitized, and the optimal control law is obtained based on the
optimal control theory of the discrete time system. Here, the

following discrete time system is considered.

7, (i+1)=@z,()+ v, (i) (12)

@ =exp(AT,), I = J;T: [exp(A7)|dz B

In the case of a 1DOF model: A=A,,, B=B,,.
In the case of a continuous model: A=A 5, B=B ;s.
Here, the evaluation function of the discrete time system is

expressed as follows.

J, = g[z(l(i)T 0.z, (i)+ Yy (i)r TVa (l)] (13)

Where Qq and r, are weighting coefficients.

M=0"M®+Q,- 0" MI(r, + I MI')' I Mo (14)
vi=—F,z, (s
F,=(r,+ " Mry'r' mo (16)

Where M is the solution of the algebraic matrix, the Riccati equation,
and 7 is a sampling interval ( = Ims in the experiment). MATLAB
command “ Iqrd ” was used to solve eq. (14) and the digital
controller was designed by using SIMLINK in the DSP.

5.2 Sliding mode control in the discrete time system ®
Similar to the previous section (5.1), the discrete time system of
€q. (12) is considered. Here we designate the switching hyperplane

as S, and express the switching function of input as
o(i)=8,2,(:) (7
The equivalent control input is given as

v ()=~(s,r)"s,(@-1),() (18)

Substituting eq. (18) into eq. (12), the equivalent control system can

be expressed as
2,(i+1)=f0-r(s,1)"s,@- 1)z, () (19)

here, S, should be selected such that the system represented by eq.
(19) becomes stable. In this study, we used a method of utilizing
the zero point of the system, and applied the optimal control theory

of the discrete time system to obtain S.
S,=(r+r'mr)'rme, 20)

Where r: is weighting coefficients for control input. M° is a
solution of eq. (14).

Next, a control input which converges the state into a hyperplane
and generates the sliding mode is considered. In this study, we
design a sliding mode control for the discrete time system, wherein
chattering is suppressed . The sliding mode control law used to

satisfy this condition is described below.

va()=v,()+v, ()

v ()=—~(8,)"' S, (@-1)z,(i) @n
ve (i) = ~{a(i) + ()}sen o (i)}

e .
a(l)—ﬂ‘"Tg——l_—", 0<17<2, ﬂ(l)Zanx (22)

Foor: Maximum value of disturbance.

6. Control experiment
6.1 Specifications of the experimental apparatus
The specifications of the system are shown as follows: m=1.08kg,
Zoy=Smm, F,~F,~1.85N, Fs=3.2IN, I,~I1~051A, Is=0.67A,

—30— Proceedings of the School of Engineering,
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R=20.6Q, 0=7500kg/m’, E=217GPa, »=0.3, C=2.49 X 10®Ns/m,
L=0.225H, L,~1.8X10"*Hm, L.~0.1891H, T.=lms, xy= x3=
185mm, x,;= x.v= 615mm, x;= 400mm, y,;= y;= 83mm, y,o= yo=
517mm, y,s= 300mm.

6.2 Setting the comparative standard for control systems

In this study, we examined the vibration-suppression performance
during levitation of a flexible steel plate for a total of 4 cases:
optimal control applied to the 1DOF model and to the continuous
model, and sliding mode control applied to each of the two models.
To compare the performance of each control system, a certain
standard must be determined. Therefore, carbon-fiber pipes are
attached to the steel plate, as shown in Fig. 5, and standard
conditions under which the levitation performance of a rigid-body
steel plate with suppressed elastic vibration can be considered to be
a rigid body are adopted. For the rigid steel plate levitated using
each control method, an external force (calculated from the coil
current of the electromagnet), as shown in Fig. 6, is applied using
the electromagnet for disturbance, as shown in Fig. 2, and the
parameters of each control system are set such that the standard
deviation of the displacement at the center of the steel plate is within
an error range of £5% for 1.0 X 10 m during the application of
any control method.

The weight matrices of optimal control (eq. (13)) are

- 1DOF model: Q%' =1, r;® =1.
- Continues model: Q5% =1, ri® =1 .

The weight matrices (eq. (13)) used for determining the switching
function Sd in sliding mode control, and parameters in the nonlinear
input terms in eq. (22) are

- IDOF model: Q4™ =1, r)*™ =1, 7=005, f=3.
+ Continues model: cre=r, ri™ =1, n=0.05,
B=3.

In the following sections, we discuss the cases in which the
flexible steel plate described in Sec. 2 (Figs. 1 and 2) is levitated
using control systems designed with the above-described parameters.

6.3 Vibration-suppression performance when disturbance is within

circuit current of electromagnet
When a steel plate is levitated using an electromagnet, the change

in the resistance due to heat generated in the electromagnet as well

Sheet steel

Carbon beam

: ; 1 i
2 i i o
0 2 0 6 ] 0 R ) E
Time(y FrequencylHz]

Fig.6 Time history and power spectrum of disturbance from

electromagnet.

as power source noise significantly affects the control performance.
When an uncertainty is included in the control system, it is very
important in practice to design a control system that accommodates
such uncertainties. Therefore, here we investigate the effect of the
suppression of uncertainties included in the same channel as control
signals, namely, a disturbance which satisfies the matching condition
of sliding mode control.

To simulate the uncertainty included in the circuit current of an
electromagnet, disturbance was forcibly added to control the signals
of electromagnet No. 5 placed at the center of the steel plate.
Figure 7 shows an example of the time history (voltage measured)
and power spectrum density of disturbance added to the control
signals. Here, as is apparent from the results described later, we
have confirmed by both experiment and numerical simulation that
odd-number modes of third or higher mode vibrations are rarely
excited due to the damping characteristics of the control system.
Therefore, in this study, we mainly discuss the Ist elastic mode
vibration, which most frequently appears.

Figure 8 shows experimental results. In Figs. 8, examples of the
results of the time history and power spectrum density of the
displacement at the center of the steel plates are shown: (a) and (b)
represent the cases in which optimal control and sliding mode
control are applied to the 1DOF model, respectively, and (c) and (d)
represent the cases in which optimal control and sliding mode
control are applied to the continuous model, respectively. The zero
on the vertical axis of the time history represents the position of
equilibrium levitation.

First, we examine the differences between the control methods
when the 1DOF model is used. When optimal control is applied
(Fig. 8(a)), elastic vibrations are excited on the steel plate due to the
enforced disturbance applied to the control signal. A peak of the
power spectrum density is observed at 4.75 Hz, which is the natural
frequency of the 1st elastic mode vibration of the steel plate used in
this experiment. In contrast, when sliding mode control is applied
(Fig. 8(b)), because it is possible to cancel the disturbance contained
in the circuit current, which is difficult to remove with the
conventional linear control theory, the elastic vibration of the steel
plate is suppressed. However, in sliding mode control, switching of
the control input at an infinite speed is assumed; therefore, the
theoretical control performance cannot be completely achieved even
when the matching condition is satisfied. Consequently, although
slight, vibration of the Ist elastic mode remains and a peak is
observed in the spectrum.

Next, we examine differences in the modeling of thin steel plates.
In Figs. 8(c) and 8(d), because a continuous model that takes into
consideration the 1st elastic mode vibration is used, no peak is
observed in the power spectrum density, as compared with the
results in Figs. 8(a) and 8(b). In particular, when sliding mode
control is applied to the continuous model (Fig. 8(d)), the best
control performance is obtained among the four cases, because
cancellation of the disturbance contained in the control signals, and
the suppression of the 1st elastic mode vibration are possible.

Table 1 summarizes the standard deviation of the time history

shown in Figs. 8(a)-8(c). By setting the standard deviation when
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optimal control is applied to the 1DOF model as the standard value
(100%) ((a) in Table 1), the standard deviation in each case is
expressed as a percentage relative to th standard value, compared
with the cases when optimal control is applied ((a) and (c) in Table
1), indicating the superiority of sliding mode control, regardless of
the steel-plate model used. In particular, even when the 1DOF
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Fig.7 Time history and power spectrum of disturbance into the
control input.

x10” X107
T 3
£
=
E i
§ Phasp e 8|
5 1
8 3 W
5 . o b
) 2 4 6 [ 0 ° D £ ) £
Time(g Frequency(Hz]
(a) Optimal control using 1 DOF model
x10™ x107°
E
=
g
E Ao A ANV A A A Ak A A B
B VWA WA
5 s N
0 4 ) 8 0 0 D EY © D
Time[s} Frequency(Hz)
(b} Sliding mode control using 1 DOF model
x10™ x10”
3
E
= 2
B Mamantonda A0 0 an A 8
§ Y WY Y
;% 1 \
" o
0 2 4 6 8 ] ) Py D 0 D
Timel[s] Frequency[Hz]
(c) Optimal control using continuous model
Lx10” x10”
£
€
E e A A A )
8 Kid gl S
3 1
a N_\
5
0 2 4 6 [ o 0 F) EY o D
Time(g Frequency[Hz)

(d) Sliding mode control using continuous model
Fig.8 Experimental results of time histories and power spectrums
of displacement at center of the steel plate under random
excitation from disturbance into the control input.

Table 1 Relative decreasing ratio of the standard deviation on time
history (In case that the disturbance was applied for the
control input).

Standard Relative decreasing

Modeling and control theory

deviation ratio
(a)|| 1DOF model + Optimal control 5.15x10%° m 100%
()| 1DOF model + Sliding mode control 3.23x10%° m 63%
(¢) |[Continuous model + Optimal control 4.25%10% m 83%
(d) [IContinuous model + Stiding mode control 2.85%10° m 55%

model, which is easy to model, is used, the vibration amplitude can
be sufficiently suppressed using sliding mode control ((b) in Table
1).e standard value. The standard deviations for the cases when
sliding mode control is applied ((b) and (d) in Table 1) are reduced
to around 60% of the standard value, compared with the cases when
optimal control is applied ((a) and (c) in Table 1), indicating the
superiority of sliding mode control, regardless of the steel-plate
model used. In particular, even when the 1DOF model, which is
easy to model, is used, the vibration amplitude can be sufficiently

suppressed using sliding mode control ((b) in Table 1).

6.4 Performance of suppression of forced elastic vibration generated
by external force

We here examine cases in which a steel plate during conveyance
receives unexpected external force from sources other than the
support electromagnets, which gives rise to elastic vibration.
Similar to the arrangement described in Sec. 6.2, an electromagnet
for disturbance was placed at the antinode position of the Ist elastic
mode vibration, and an external force, as shown in Fig. 6, was
applied to the steel plate levitated by electromagnetic attraction
force. Thereby, a state in which elastic vibration is easily excited
was created. The magnitude of the external force is selected such
that the standard deviation of displacement (5.15 X 10" m in Table
1) in the case of applying optimal control to the 1DOF model, as
described in Sec. 6.3, becomes almost the same as the standard
deviation when applying optimal control within approximately 10%
error. When disturbance is added to a steel plate from sources
other than the support electromagnet, the disturbance basically does
not satisfy the matching condition of sliding mode control. Nonami
et al. ® showed that when the lst delay of the coil current of an
electromagnet can be neglected by applying sufficient feedback of
the current, the matching condition holds even when the disturbance
is absent from the same channel as the control input. However, in
this study, the time constant of the electromagnets is 12.6 ms, which
is relatively large because it corresponds to 6% of the period of the
Ist mode vibration, i.e., 0.21 s. Moreover, due to various
restrictions of the system, current feedback cannot be applied to the
extent that the Ist delay can be ignored. As a result, it is
considered that the complete matching condition does not hold.

In Fig. 9, experimental results are shown (only the power
spectrum density of displacement); (a)-(d) represent the same cases
as those in Sec. 6.3. In Fig. 9, when the 1DOF model was used
(Figs. 9(a) and 9(b)), a peak of the power spectrum density due to
spillover of the Ist elastic mode vibration is observed with both
control methods. However, in the case of sliding mode control (Fig.
9(b)) which is robust against modeling errors, superiority against
lower order spillover can be confirmed. In contrast, when the
continuous model is used (Figs. 9(c) and 9(d)), sufficient
vibration-suppression performance against Ist elastic mode vibration
was observed regardless of the control method applied. However,
different from the cases of the IDOF model, there is almost no
difference in the results between Fig. 9(c) and Fig. 9(d). This
means that, when the vibration mode of the object to be controlled is

taken into consideration in the controller, and therefore spillover
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(c) Optimal control + continuous model (d) Sliding mode control + continuous model

Fig.9 Experimental results of power spectrums of displacement at
center of the steel plate under random excitation from the
electromagnet for disturbance.

Table 2 Standard deviation and the relative decreasing ratio on the

time histories in the case of the disturbance from the

electromagnet.
! L Relative decreasing
(a) || 1DOF model + Optimal control 5.27x10% m 100%
(b)|| 1DOF model + Sliding mode control 4.48x10° m 85%
(c) f{Continuous model + Optimal control 2.79x10° m 53%
(d) |[Continuous model + Sliding mode control 2.69x10° m 51%

does not generate modeling errors, the superiority of sliding mode
control is not clearly apparent.

Table 2 summarizes the standard deviation of the time history of
displacement, similar to Table 1 in Sec. 6.3. When the continuous
model is used ((c) and (d) in Table 2), the standard deviation is
reduced to approximately 50% of the standard ((a) in Table 2) for
both control methods. From this, we can demonstrate that when an
external force not satisfying the matching condition is applied to
forcibly excite elastic vibration, effective suppression of the elastic

vibration can be ensured by the use of the continuous model.
7. Conclusions

Assuming actual processes wherein various disturbances are
applied to an electromagnetically levitated thin steel plate, we
evaluated the performance of a system including modeling of the
thin steel plate, by applying sliding mode control for vibration
suppression. The following results were obtained.

(1) For an electromagnetic levitation system of thin steel plates,
the application of sliding mode control to the 1DOF model,
which is fairly easily modeled, revealed the possibility of
effective suppression of disturbance. In particular, sliding
mode control was confirmed to be highly robust to
uncertainties included in the circuit current of electromagnets.
Since the use of a simple model can reduce the development
cost of control systems, a result with industrial effectiveness

was achieved.
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(2) We demonstrated that ensuring superior control performance
against disturbance that does not completely satisfy a matching
condition is possible by the application of sliding mode control
to the continuous model of a thin steel plate, although
numerical manipulation is fairly complex. The results of this
study are applicable to various disturbances that are expected
to occur during actual electromagnetic levitation conveyance

processes, thereby enabling practical effective control systems.
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