Abstracts

Study of Fluidity and Transition Phenomena of Lubricating Oils and Greases by Torsional Braid Analysis

by

Setsuo SASANUMA

(Received on Sept. 28, 2001)

Abstract

In this paper, it has been tried that a torsional braid analysis (TBA) is applied as a testing method for examining the fluidity and transition phenomena of lubricating oils and greases. As a sample, lubricating oils, greases, and some reference samples were employed. Viscoelastic properties of these samples were measured in the wide temperature range. From these results, temperature dependence curves of logarithmic decrements and those of relative rigidities of the samples were obtained, and then the fluidity and transition phenomena of samples were examined. It is found that as a result of examining, mineral oil has two transition points, and that the fluidity and transition phenomena of greases are greatly influenced by those of their base oil. All results show that it is clarified that the method of TBA is effective for the examination of fluidity and transition phenomena of lubricating oils and greases.

Keywords: Fluidity, Transition Phenomena, Viscoelastic property, Lubricating oil, Grease

*1 Associate Professor, Department of Mechanical Engineering.

Ultimate Strength of Carbon Fiber Chip Reinforced Concrete Cylindrical Shells with Openings under Impact Line Load

by

Kazuhiko MASHITA, Kazuomi MINAMOTO, Yoshinori SATÔ, Takashi KUMADA, Yuko SUZUKI

(Received on Aug. 20, 2001, accepted on Nov. 21, 2001)

Abstract

The main purpose of this paper is to investigate both experimentally and theoretically, the strength of carbon fiber chip reinforced concrete circular cylindrical shells with openings under impact line load. Recently in our highly developed and complicated society, it is favorable that not only standard static load but also impact load for shell and spatial structures might be taken into account as the design load, because these shell structures could provide for large capacity of audience and sometimes refuge shelter from a natural disaster.

Although the features on carbon fiber chip reinforced concrete shell could show the highly isotropy and homogeneity in mechanical behavior and smooth adaptability to curved surfaces in construction, the strength on a shell with edge beams and openings under impact load could be hardly estimated.

In this paper the effect of edge members and openings on shell strength under impact line load was investigated. The experimental study was conducted on small-scaled carbon fiber chip reinforced and standard steel reinforced concrete shell specimens. The theoretical study was conducted using the nonlinear transient dynamic finite element analysis. The strength and failure patterns of a shell with edge beams and openings under impact line load were discussed based on the results of the experiments and numerical analysis.

Keywords: Concrete Shell, Carbon Fiber Chip, Impact Line Load

*1 Professor, Department of Architecture and Building Engineering.
*2 Taisei Corporation.
*3 Graduate Student, Course of Architecture and Building Engineering.