Fabrication of Equally Axial Channel Extrusion Device for Processing of TiCoSb-based Intermetallics

by

Wilfried Wunderlich*1

(Received on March 31, 2009 and accepted on May 25, 2009)

Abstract

Equally axial channel extrusion (EACE) belongs to the family of severe plastic deformation processing methods, which have the ability to produce ultra-fine grain materials or nano-materials with relative low costs. After summarizing the processing methods for nano-crystalline materials, this paper describes the fabrication of such a device. Preliminary results and characterization of TiCoSb-specimens are described. This research aims to produce thermoelectric materials, and the proposed materials processing method is considered to be environmental friendly because of low costs.

Keywords: Material processing, Nano technology, Thermoelectric materials.

1. Introduction

Equally axial channel extrusion (EACE) is a relatively new processing method for metals or intermetallic alloys [1,2] developed in the last decade. This method, also called equally axial channel pressing (EACP) due to the high applied pressure of powder compaction with subsequent severe plastic deformation (SPD), mainly due to large shearing stresses in a 900 bent pipe. During extrusion, it is important to apply a back stress in order to avoid inhomogenities [3]. Also when the extrusion is applied several times in different directions, certain textures can be adjusted [4]. The main advantage of ECAP is that the heavily worked microstructures typically show high strength, in combination with good ductility at relatively low costs for equipment or process energy. Mechanical properties get improved, even fatigue life becomes longer [5] or low temperature superplasticity occurs [6]. The reason is that during SPD the grain get sheared, partly recrystallize and result in Ultra-fine-grain (UFG) or even nano-crystalline (NC) materials with all its micro-structural advantages [7].

There are several processing methods for nano-crystalline materials, the main methods are summarized in Fig. 1. The first nano-crystalline material was produced by condensation of metallic vapor into nano-powder with subsequent sintering [7-10] (Fig. 1f). Rapid quenching of

*1 Associate Professor, Department of Material Science

Fig. 1. Six main processing techniques for nanocrystalline materials
metallic melts leads to metallic glasses [11], which crystallize into nano-materials during annealing (Fig. 1e). Ball-milling [12] and ion-bombardment destroys the crystal lattice on the surface and lead to nano-crystalline re-arrangement (Fig. 1 c, d). In chemistry the most often applied method is the sol-gel method, where organic precursor molecules are polymerized into ceramics or ceramic-metal composites [13] (Fig. 1 b). The goal of our laboratory is to produce intermetallic alloys for thermoelectric applications [14]. The processing method used until now, requires at least three steps, pressing the powder into pellets, arc-melting and annealing, which should be longer than 100h according to literature [15].

The intention of this paper is to describe the fabrication of a new EACE-equipment in order to produce TiCoSb-based intermetallics in an economic way. The first chapter describes the design of the die, the second chapter the experiments and the last chapter the resolved material.

2. Experimental equipment

In order to fabricate a die for EACP in a 50x70x80mm steel block (SK105) a vertical hole ($\Phi = 6$mm) was cut, and from the top another hole ($\Phi = 6$mm) was drilled until it reaches the first hole, as shown in fig. 2a. This hole is used to fill in the powder and the other hole is used to extrude the produced specimen using as shown in fig. 2a. The plunger is fixed during experiment, but can be released in order to draw the specimen out. A heater (Sakaguchi MS1000) with 25x25x1.5mm dimension and a power of approximately 1000W is applied from the bottom in order to heat the shear chamber. The heater was inserted in a slit produced by rotary grinding. Cooling water inlet and outlet was drilled as holes ($\Phi = 8$mm) and the holes were connected with bended Cu-pipes screwed into the block. Fig. 2b shows the die as manufactured in this stage.

During extrusion experiments it was detected that the power from one heater was not sufficient. For this reason the steel block was rotary-grinded in order to apply three more additional heaters, which were embedded in Isolite fire brick as shown in fig. 3a. Also, another advantage was to reduce the mass and therefore the heat capacity of the steel block in order to increase the temperature of the device. For applying the back stress a spring was attached at the plunger at the specimen outlet. The spring had a spring modulus according

- a)

- b)

Fig. 2. a) Sketch and b) picture of the main device for equally axial channel extrusion. The left plunger is fixed; the upper plunger applies pressure to the powder which is heated from the bottom and both sides. During experiment a third plunger is attached from the right, which applies the back stress.

- a)

- b)

Fig. 3 a) Sketch, and b) preliminary realization of the attachment of the EACE-device to the deformation machine. The spring in the rear part applies back stress to the specimen.
Fabrication of Equally Axial Channel Extrusion Device for Processing of TiCoSb-based Intermetallics

3. Experimental procedure

Ti, Co, and Sb powders with defined weight ratios were filled into the tube and a pressure of 10 MPa applied. Then the heaters were turned on slowly. All heaters are form the same type and they were heated with same electric power. When increasing the voltage, the temperature increases as shown in fig. 4. Due to the large mass of the die, it takes time of about 20 min in order to achieve equilibrium. The increase of the temperature is proportional to the input voltage and hence the input power, because the resistance does not change much with temperature. This is confirmed by the straight line above about 400K. When the temperature is lower, it takes longer time to reach equilibrium. This explains the deviations.

During heating the applied compression stress reduced to about 7 MPa. When the maximum temperature is reached, the compression stress was increased. The powder particles get sheared and due to temperature they react with each other. After the experiment the air cooling needs about three hours. When water cooling is used, the cooling time reduces remarkably.

4. Result and discussion

The reacted specimens were analyzed by SEM. Compared with arc-melted specimen with a grain size of about 15 µm shown in fig. 5a, the grain size is much smaller (about 1.5 µm). The composition has not yet been analyzed, but the desired formation of the half-Heusler phase TiCoSb is expected. Compared to the arc melting and subsequent annealing, the specimens can be produced much faster and with less amount of energy. Hence, this method is also concerned as environmental friendly processing technique. A further increase in processing temperature from presently 700 K to about 900 K is desired in order to make processing easier and smoother. However, when this equipment is used for student's education, special care is necessary for safety reasons.

5. Conclusion

This is the first and preliminary report of manufacturing an ECAE device. Specimens can be produced faster and with less amount of energy than previously used techniques. This technique has the ability to produce compact composite materials with nano-scale dimensions.

Fig. 5 TiCoSb specimen produced by a) arc-melting, b) the EACE device

Acknowledgement
This device was manufacture in our university with help from
Mr. Kiyoshi Hiraga and Mr. Seiichi Kamo which is greatly appreciated.

References