Influences of the Duration of Incremental Pressure on One-Dimensional Consolidation Characteristics of Clays

by

Hiroaki SHIRAKO, Motohiro SUGIYAMA, and Masaru AKAISHI

(Received on Mar.29,2002, accepted on Jul.10,2002)

Abstract

Three series of one-dimensional consolidation tests on four remoulded clays and three undisturbed clays were performed to investigate the influence of the duration of incremental pressure of up to 40 days on the characteristics of consolidation of clays. The e-1og(p) curves of the remolded clays almost matched, irrespective of the incremental duration of pressure, and consolidation was equal. However, the e-1og(p) curves of some undisturbed clays did not match, but changes in the duration of incremental pressure did not indicate significant variations in the coefficients of secondary consolidation. Experimental results and calculated values show that the equal consolidation can be explained by the increases in the volume of primary consolidation.

Keywords: 1D consolidation, incremental duration of pressure, primary consolidation, coefficient of secondary consolidation

1. まえがき

標準圧密試験は、土質試験の中で最も試験期間を要する力学試験で、試験期間を短縮するために載荷時間間隔を短くしたり排水距離を小さくするなどの方法が検討され、その影響が調べられている1)。また、定ひずみ速度載荷による圧密試験も HS型のに比べて、この試験では検討対象外とする、実際地盤の載荷は、定ひずみ速度で発生しないからである2)。Fig.1は載荷時間間隔を変えて行ったe-1og(p)曲線の一例である5)、各曲線は互いにはば平行で、載荷時間の短いものは間隔比は大きいにずれ増加する圧密試験の間隔比を示している。また、載荷時間の短縮に伴い圧密試験の間隔比を減らすと、e-1og(p)曲線は標準圧密試験とほぼ一致することを示しており5)、土と圧密試験との間圧密試験を比較するときの要因とされている5)。

吉田ら5)、p=392kN/m²からp=3136kN/m²(Δp:p=1)まで載荷時間間隔を15分、60分、120分、1日、7日と変化させて、最終荷重段階では長期間放置する一次元圧密試験を行っている。その結果、各載荷段階の間隔比の減少率は、載荷時間によってやや異なり、約1ヶ月経過後は一定値を示している。また、Crawford5)や村上5)は、各載荷段階毎の全圧密量を載荷時間に依存しないという結果を示している。この結果によれば、標準圧密試験の全試験期間をあらかじめに短縮した結果を利用しても、圧密圧縮量の予測には影響がないことになる。

以上の結果、載荷時間間隔を短縮した場合の一次元圧密量に関しては、相関する結果が得られており、その要因は明らかできない。今井は次元圧密の観点から、吉田らの試験結果に基づいて、ある圧密段階で十分にクリップ圧縮が生じないうちに次に荷重が加わると、前荷重の下で残存したクリップ圧縮量が、新荷重の一次圧密過程に生じることを示している1)。しかし、一次圧密量と二次圧密量（クリップ圧縮量）は分離して測定できないので、一次圧密量から発生する二次圧密量を正確に変化させるのか、するところのごとくの程度で、不明な点は多い。

この論文では、4種類の再構成粘土および三種類の不擾乱粘土を用いて、載荷時間間隔を変化させた一次元圧密試験を行い、載荷時間間隔が変化した載荷時間間隔の違いが有効、圧密係数ならびに二次圧密係数に及ぼす影響を調べている。また、実験結果と二次圧密を含む一次元圧密試験の再現計算1)7)から、載荷時間間隔の増減による一次、二次圧密量の変化について検討している。
Table 1 Physical properties of clayey soils

<table>
<thead>
<tr>
<th>Sample</th>
<th>100% (g/cm³)</th>
<th>10% (%)</th>
<th>2% (%)</th>
<th>Grading (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.739</td>
<td>69.3</td>
<td>31.3</td>
<td>6 79 15</td>
</tr>
<tr>
<td>B</td>
<td>2.641</td>
<td>65.4</td>
<td>35.8</td>
<td>15 49 36</td>
</tr>
<tr>
<td>C</td>
<td>2.571</td>
<td>67.6</td>
<td>46.2</td>
<td>40 38 22</td>
</tr>
<tr>
<td>D</td>
<td>2.638</td>
<td>67.0</td>
<td>36.0</td>
<td>11 55 34</td>
</tr>
<tr>
<td>E</td>
<td>2.653</td>
<td>100.3</td>
<td>51.2</td>
<td>35 50 15</td>
</tr>
<tr>
<td>F</td>
<td>2.595</td>
<td>70.5</td>
<td>34.9</td>
<td>45 45 10</td>
</tr>
<tr>
<td>G</td>
<td>2.665</td>
<td>85.2</td>
<td>45.8</td>
<td>12 48 40</td>
</tr>
</tbody>
</table>

Fig.2 Consolidation period for Test A.

(a) p₀=19.6kN/m²
(b) p₀=39.2kN/m²

Fig.3 Consolidation time curves due to differences in incremental duration of pressure obtained from Test A.

2. 試料および実験方法

試料は、波形破壊の1.5倍の含水比で練り分け、再構成した土台（試料A, B, C, D）と3種類の不圧密粘性土（試料E, F, G）で、物理的性質をTable 1に示した。

試料の粘土試験機を用い、載荷時間間隔が圧密体、二次圧密係数（α₆=dv/log Δt/ΔV）体積ひずみ式定義）ならびに圧密諸定数に及ぼす影響を調べた。

実験A: 試料Aを予圧密荷重 p₀=19.6kN/m²ならびに39.2kN/m²で1日間予圧密後、供試体高さが2cmになるよう上端をカットして、更に p₀で1日間予圧密した。Fig.2のように荷重 p₀を10分から40日間載荷した後、荷重 p₀を再載荷して圧密量を測定した。この実験では、荷重 p₀を再載荷する前後の圧密時間は全圧密量と二次圧密係数 α₆に及ぼす影響を調べた。

実験B: 実験Aと同じように試料B, C, Dを p₀=9.8, 19.6あるいは78.5kN/m²で予圧密し、載荷時間間隔 tₖを変化させた p=1255.7kN/m²まで段階的に圧密した(荷重増分比Δp/p₀=1)。試料Dの載荷時間間隔 tₖは、標準圧密試験の1日、1日を越えた場合終了時(EOF: End of Primary)、1日とEOFの間に35幅〜300分ならびに10日である。試料B, C, Dの tₖは、30分〜1日とした。

実験C: 不圧密試料E, F, Gを載荷時間間隔1日、EOF、10日として p₀=49.1kN/m²に作用させた(Δp/p₀=1)。載荷する際は二次圧密係数 α₆を求められないので、最終荷重段階に至るまでの全荷重経路(p=39.2〜1255.7kN/m²)で2日間経時変化を測定する圧密試験を行った。

実験B, CのEOFに達する時間 tₑ₀は、便宜的にα₆法により計算した。供試体の排水条件はすべて上下面排水である。

3. 実験結果と考察

3.1 圧密荷重載荷期間の影響（実験A）

2種類の荷重で予圧密した後、荷重 p₀の載荷期間を変えて得られた p₀とp₀による体積ひずみ-時間関係がFig.3(a)である。p₀による体積ひずみ量(10mmから始まる曲線の小さい記号)は、各試料の初期状態が同じなので、ほぼ同一線上をたどっている。

p₀の載荷期間が1日よりも長い4日以上の場合(Fig.3(b))、p₀による1日の後の体積ひずみ量と、p₀と p₀による全体ひずみ量は極端に減少している。このような傾向は、吉田らの実験でも観察されており、時間効果によって化学的粘性力も作用すると説明されている(1)。一方、p₀の載荷期間が480分までの全体ひずみ量は、1日載荷よりもやや大きいが短時間であるが、1日以上の載荷期間では、全体ひずみ量に及ぼす荷重載荷期の影響は少ない。

荷重 p₀によって生じた体積ひずみ量と二次圧密係数 α₆を、p₀の載荷期間（対数軸）に対してプロットしたのがFig.4である。二次圧密係数は、基準時間の占める分率で示され、各試料のp₀載荷時を時間原点(体積ひずみ零)に取り直して求めたものである。体積ひずみ量は、載荷期間の增加に比例して級々増加し、10分載荷と40分載荷では4倍もの差が生じている。これに対して二次圧密係数は、p₀の載荷期間1日を境にその大きさが変化する。すなわち、載荷期間が1日以下での二次圧密係数はわずかに増加するのに対して、1日よりも長い3つ・のデータはいずれも大きく増加している。

一般に、粘土は、時間効果によって凝結荷重状態になることが知られているが、正規圧密粘土よりも荷重量は減少する。また、時間効果は二次圧密を受ける期間で議論されるため、一次圧密が1時間程度で終える標準圧密試験（1日載荷）にも時間効果があると言える。圧密面 p₀の載荷期間が時間効果を表すとすれば、Fig.5の体積ひずみの減少は、時間効果（凝結荷重）
がその一要因と考えられる。一方、載荷期間 1 日を廃に二次圧密係数が大きくなるのは、注目される点である。時間効果が二次圧密に影響するか否かについては、さらに調べる必要があるが、本実験結果を見る限り、載荷期間 1 日以下の二次圧密係数は、時間効果の影響を受けないパラメーターと言えることができる。

3.2 再構成粘土の実験結果（実験 B）

（1）体積ひずみ一時間曲線

Fig.5(a)～(i)は、標準変形試験の 1 日荷重と載荷時間間隔 t_0
の短い体積ひずみ一時間関係を、試料ごとにまとめ比較したものである。図の左記号が 1 日荷重、右記号が t_0の短い結果で、
図の左かから 30分、60分、90分、300分の順に示している。各試料のデータ間隔は全て共通のため当然であるが、予圧密後の
荷重による t_0までの体積曲線(記号)は、1日載荷と重な
っている。しかし、それに伴い、t_0の短い全ての体積曲線は、圧密
圧力に比例す1日荷重よりも下方に位置し、t_0時間後のひずみ
量は1日載荷(白記号)1日後のひずみ量とは等しいかやや大き
いか。また、試料 B、Dのひずみは、约10分以内で時間の対数に
比例し、その順に（二次圧密係数 a_p）は1日載荷に近い。

Fig.6は、試料BのEOP。1日、10日間隔載荷で得られた最
終荷重段階 p=1255kN/m^2の体積ひずみ一時間関係である。図
から明らかにように、EOP。1日、10日間隔で圧密度は大きく
なり、EOP載荷では一次圧密が終了する10分程度までの圧密
量が1日載荷の約15倍となっている。それ以上は時間の対数
に比例し、3者とも体積曲線はほぼ平行である。

（2）c-log(p)曲線と圧密定数

Fig.7(a)～(c)と Fig.8(a)～(c)は、載荷時間間隔を変化させた試
料 Aのc-log(p)曲線ならびに体積圧縮係数 m=(dS/dp)と平均圧密
圧力 pの関係である。圧縮式初期圧密比 c_0が等しくなるよう
に注意を払ったが、各試料の c_0には多少のばらつきが見られ
た。このため各曲線を一様に比較することは難しいが、Fig.1のよ
くに t_0の減少がと-log(p)曲線を右方へ移動させることなく、t_0
による顕著な曲線の違いは見出せない。予圧密間隔を等しくし
たこと、あるいは c_0の違いから、予圧密後の mは t_0が短い
ものほど小さくなる傾向を示す。しかしそれ以降、Fig.5の結
果を反映してほぼ等しくなることがわかる。

3種類の再構成粘土を用いた今回の一圧密試験では、載荷時
間間隔 t_0による圧密性 mやc-log(p)曲線への影響は、極めて少
ないと考えられる。

Fig.9(a)～(c)は、載荷効果 c、平均圧密圧力 pの関係である。c
には、t_0による明確な違いや傾向が見られず、c_0は比較的ばら
つきの小さな大きさの力であることを考えれば、実用上 c_0に影
粘土の一次元圧密特性に及ぼす載荷時間間隔の影響

Fig.7 Comparison of c-log(p) curves (Test B)

Fig.8 Comparison of relation of m, with consolidation pressure (Test B)

Fig.9 Comparison of relation of c, with consolidation pressure (Test B)

Fig.10 Comparison of relation of \(\alpha \), with consolidation pressure (Test B)

図4.10の10日後の\(\alpha \)は、1日載荷よりも1.5〜2倍大きくなった。これは、実験Aでも観察されたので、物性の違いや時間効果（凝固速度）を考慮して、さらに調べる必要がある。

再構成粘土を利用した以上の圧密試験結果では、EOPから数100分載荷を採用しても載荷時間間隔が圧縮性mやc-log(p)曲線に及ぼす影響は見られなかった。また、載荷時間間隔を短縮した\(\alpha \)は、1日載荷とはほぼ等しいことが明らかとなった。
3.3 不凍結乱粘土の実験結果（実験C）

3種類の不凍結乱粘土から得られたe-log(p)曲線を示したのがFig.11である。図で示したp_Cは、1日蓄積から得られた圧密降伏応力である。p_Cに関してLaddらは、標準圧密試験から求められるp_Cは、EOPと比較して10%前後小さいとしており¹²、土および日本産粘土でまったくな説明とは直接関連していないと¹³。EOP載荷された試料F、Gのe-log(p)曲線は、右上にずれたp_Cが増加し、正常圧密領域では互いに平行である。しかし、間隔比の差はFig.1の結果ほど大きくなく、試料Eでは載荷時間間隔の影響が少ないようである。

Fig.12(a)、(b)は、体積ひずみ一時間関係の例として、圧密荷重p=313.9〜1255.7kN/m²で得られた試料F、Gの結果を示したものである。図の矢印は、一次圧密終了時(EOP)を表している。1日後の圧密量は、載荷時間間隔が短くなるほど大きくなり、EOP（図の矢印）の圧密量と1日荷重1日荷重に10日載荷10日後の圧密量は、EOP>1日>10日順、あるいは3者にほぼ等しいと考えられる。

3試料の圧密係数c_a、c_bおよび二次圧密係数c_rと、平均圧密功率p_gの関係を比較したのがFig.13とFig.14である。EOP載荷された試料F、Gの圧密荷重領域におけるc_aが確かに小さくなっていている以外は、載荷時間間隔によって各係数の大小を判定する上に難しく、試料ごとにその傾向は異なる。c_r、c_bは各試料で比較的近い値を示しているので、両係数に及ぼす載荷時間間隔の影響は少ないものと思われる。

以上、種類の不凍結載荷時間間隔が一次元圧密特性に及ぼす影響について調べた実験Bと実験Cから、以下の点が明らかになった。再構成粘土のe-log(p)曲線は載荷時間間隔によらずほぼ一致し圧縮性を示している。不凍結乱粘土のe-log(p)曲線は、圧縮性に及ぼす影響を等しくなり、載荷時間間隔が短くなるほど変化する傾向は異なる。二次圧密係数や圧密係数に及ぼす載荷時間間隔の影響は少ない。以上の実験結果を踏まえ次章では、載荷時間間隔による圧密量の変化を評価するために、一次圧密の著しい二次圧密を含む一次元圧密解析によって検討する。

4. 圧密量－時間関係の数値解析

4.1 一次圧密量と二次圧密量

圧密荷重が、載荷時間間隔によって変化する場合と変化しない場合の体積ひずみ一時間関係を、二次圧密を含む一元圧密解析手法を利用して検討する。一次圧密の体積ひずみの曲線形状をさらに変形させ、時間の関数と仮定し、その変化率を式(1)〜(3)で表す。

\[
\begin{align*}
\frac{ds}{dt} &= \frac{ds_0}{dt} = \frac{m_0}{\alpha} \\
\frac{ds}{dt} &= \frac{m_0}{\alpha} \\
\alpha &= 0.434 \cdot \alpha
\end{align*}
\]

今ここに、\(\alpha\)は時間に伴って発生する体積ひずみ（一次圧密量）、\(\alpha\)は時間の対数に比例して発生するクリープ体積ひずみ（二次圧密量）、\(m_0\)は一定圧密に関する体積ひずみ係数、\(U_0\)は圧密度である。二次圧密は、式(3)のように有効応力の増加に伴い発生するものと仮定する。

Fig.15中、示す一定の\(m_0\)、\(m_0\)、\(c_0\)と圧密荷重H=1cm、圧密荷重増分dp=98kPaならびに1日荷重と仮定した一次圧密量の計算結果が図中の実線である。定数\(m_0\)をゼロとした点線では、二次圧密が計算されないと仮定する。

今回の実験のように載荷時間間隔が一次圧密の影響を受けない場合、載荷時間の短い一次圧密終了時のEOPと長い10日間隔の圧密量は、1日のそれと同等となり、実験によってこれを再現するには、\(m_0\)、\(m_0\)、\(c_0\)を変化させる必要がある。実際の実験から\(c_0\)は等しいと考えられるので、Fig.15の計算例（破線）では、1次圧密量すなわち体積変化係数\(m_0\)の値を載荷時間に応じて増減させ圧密量を一致させている。一方、既往の研究のところ圧密量が載荷時間によって異なる場合には、\(m_0\)、\(c_0\)が同時にあるいは個別に変化する場合と、両者が全く変化しない場合を考えられる。
Fig.15 Strain-time curves by the change of the m, Fig.16 1-D consolidation analysis results Fig.17 Comparison of relations of m/m, with p

Table2 Properties of materials for 1-D consolidation analysis

<table>
<thead>
<tr>
<th>p (kN/m²)</th>
<th>One Day</th>
<th>EOP</th>
<th>Ten days</th>
</tr>
</thead>
<tbody>
<tr>
<td>m (-10⁻³)</td>
<td>(cm/min)</td>
<td>m (10⁻¹)</td>
<td>(m²/kN)</td>
</tr>
<tr>
<td>78.5</td>
<td>0.0120</td>
<td>0.10</td>
<td>7.65</td>
</tr>
<tr>
<td>157.0</td>
<td>0.0662</td>
<td>0.15</td>
<td>3.57</td>
</tr>
<tr>
<td>313.9</td>
<td>0.0030</td>
<td>0.20</td>
<td>1.83</td>
</tr>
</tbody>
</table>

4.2 計算結果と考察

Fig.16 は、実験 D の EOP、1 日、10 日戴荷で測定された間隔比の瞬時変化 (記号と、式 1)～式 (3)による再現計算結果を示すものである。2次態密を考慮した再現計算に必要な土質定数 c, a, c, が、1 日戴荷の際の弹性変形率結果を決定し、EOP と 10 日戴荷にも同じ数値を用いている。m は、Fig.15 に同様に各戴荷時間の実測値に一致するよう試行錯誤的決定した。その結果を Table2 に示した。EOP と 10 日の c, a, c が、1 日戴荷の値であるにもかかわらず一次態密量のみを変化させることで、計算結果（実験と良く一致）は、実験値を良く再現している。計算から求めた各 m と 1 日戴荷の m の比をとり、平均態密圧力との関係を調べたのが Fig.17 である。戴荷時間間隔の違いによる体積変形係数比 m/m は、大きく変化し、EOP 戴荷の m/m は、増減が、10 日載荷では減少することがわかる。

一次態密中の二次の態密を分離して測定できないので比較論の推論は出ないが、二次態密係数 a, c は戴荷時間間隔により大きく変化しないので、圧密量の変化は一次態密量 m の増減が大きな要因と考えられる。

5. 結 言

一次態密実験の戴荷時間間隔が、圧密特性に及ぼす影響を調べる目的で、7 種類の土を用いた圧密試験と二次態密を考慮した一次態密計算を行った。得られた結果は、以下のに要約される。

1) 圧密前の戴荷期間が 1 日よりも短い場合、二次態密係数はほぼ等しく圧密量は増加する。1 日よりも長くなると時間効果によって圧密量は大きく減少し、二次態密係数は増加する。
2) 二段階載荷した再構成粘土の e-log(p)曲線は、戴荷間隔間隔にのみ一致したが、複雑粘土では等しくなる試験の欠如が存在した。二次態密係数と圧密係数は戴荷時間間隔の影響の少ないパラメータと言える。

3) 戴荷時間間隔によって異なる圧密量－時間間隔は、一次態密量に関する体積変形係数 m の増減させてごとに再現できるから、戴荷時間間隔による圧密量の変化は、一次態密量 m の増減が大きな要因である。

参考文献

1) 特殊圧密試験法に関する研究委員会：厚生省報告 1-2、段階載荷圧密試験について、特殊圧密試験に関するシンポジウム論文集、土質工学、pp.15-26、1988。
2) 地盤工学会：土質試験の方法と解説、第 6 編 第 3 章 土の段階載荷による圧密試験、pp.337-338、2000。
3) 土質工学会：土質試験の方法と解説、第 6 編 第 2 章 土の圧密試験、pp.302-305、1990。
4) 高田 俊、伊藤道夫、平尾隆行：乾燥土の圧密・圧縮特性に及ぼす戴荷速度の影響、第 26 回土質工学研究発表会、Vol.26、pp.279-280、1991。
6) 村上 哲利：戴荷時間と荷重増分比が圧密試験結果に及ぼす影響とその解釈、土質学会論文報告集、Vol.34、No.2、pp.153-157、1994。
7) Imai, G.: Analytical examinations of the foundations to formulate consolidation phenomena with inherent time-dependence, Key Note Lecture, IS-Hiroshima, 1995。
8) 福田 善彦、赤石 勝：圧密解析、土質工学会論文報告集、Vol.20、No.2、pp.119-127、1980。
9) 白鳥博明、杉山太宏、前田道之助、赤石 勝：二次態密を含む一次態密解析における土質定数、土と基礎、地盤工学会、Vol.49、No.6、pp.14-16、2001。
10) 白鳥博明、杉山太宏、外崎 明、赤石 勝：戴荷時間間隔の一次態密特性への影響、第 36 回地盤工学研究発表会、pp.969-970、2001。
11) 石田昌達、及川 洋：短期間載荷による軟弱土の圧密試験方法についての一考察（第 1 の段階）土木学会第 44 同年次学術講演会概要集、pp.374-375、1989。
13) 土田 孝、永野賢司：一次態密終了条件(EOP)で求められる圧密降伏応力について、第 29 回地盤工学研究発表会、pp.283-284、1994。

---110---